Processing math: 0%

Sunday, 12 December 2021

Distribution of the Determinant of a Complex-Valued Sample Correlation Matrix

In this post, we look at the distribution of the determinant of the sample correlation matrix of the realizations of a complex-valued Gaussian random vector. The distribution for real-valued Gaussian random vector was developed in [1], and we largely follow the developed framework. Thanks to Prashant Karunakaran for bringing this problem and the many applications to my attention in late 2017/early 2018.

Let \boldsymbol{x} be a Gaussian random vector of length p with mean \boldsymbol{\mu} \in \mathbb{C}^p and covariance \boldsymbol{\Sigma} \in \mathbb{C}^{p\times p}. Let \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(n)} denote n realizations, n \geq p, of \boldsymbol{x}. In the terminology of [1], the adjusted sample covariance matrix is given by \boldsymbol{S} = \frac{1}{n}\sum_{i = 1}^{n}(\boldsymbol{x}^{(i)} - \bar{\boldsymbol{x}})(\boldsymbol{x}^{(i)} - \bar{\boldsymbol{x}})^\mathrm{H}, where \bar{\boldsymbol{x}} is the sample mean given by \bar{\boldsymbol{x}} = \frac{1}{n}\sum_{i = 1}^{n}\boldsymbol{x}^{(i)}. Note that the adjusted sample covariance matrix is positive semi-definite.

The correlation matrix \boldsymbol{R} is defined as: \boldsymbol{R} = \boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{S} \boldsymbol{D}^{-\frac{1}{2}}, where \boldsymbol{D} = \mathrm{Diag}(\boldsymbol{S}) is a diagonal matrix with the diagonal elements of \boldsymbol{S} on the main diagonal. Hence, \boldsymbol{R} has unit diagonal elements and is independent of the variance of the elements of \boldsymbol{x}. 

Now, for real-valued \boldsymbol{x}, the determinant of \boldsymbol{R}, denoted by |\boldsymbol{R}|, is shown in [1, Theorem 2] to be a product of p-1 Beta-distributed scalar variables \mathrm{Beta}(\frac{n-i}{2},\frac{i-1}{2}),  i=1,\dots,p-1. The density of the product can be given in terms of the \mathrm{MeijerG} function [2] as follows [1, Theorem 2]:

g_\mathbb{R}(x;n,p) = \frac{\left[\Gamma(\frac{n-1}{2})\right]^{(p-1)} }{\Gamma(\frac{n-2}{2})\dots\Gamma(\frac{n-p}{2})} \mathrm{MeijerG}^{\begin{bmatrix}p-1 & 0 \\ p-1 & p-1\end{bmatrix}}\left(x\middle|\begin{matrix}\frac{n-3}{2},\dots,\frac{n-3}{2}\\ \frac{n-4}{2},\dots,\frac{n-(p+2)}{2}\end{matrix}\right).

Analogously, for complex-valued \boldsymbol{x}, |\boldsymbol{R}| is a product of p-1 Beta-distributed scalar variables \mathrm{Beta}(n-i,i),  i=1,\dots,p-1. The density of the product can now be given in terms of the \mathrm{MeijerG} function, in a straightfoward manner, as follows.

g_\mathbb{C}(x;n,p) = \frac{\left[\Gamma(n-1)\right]^{(p-1)} }{\Gamma(n-1)\dots\Gamma(n-p+1)} \mathrm{MeijerG}^{\begin{bmatrix}p-1 & 0 \\ p-1 & p-1\end{bmatrix}}\left(x\middle|\begin{matrix}n-1,\dots,n-1\\ n-2,\dots,n-p\end{matrix}\right).

In the following, a Mathematica program for numerical simulation and the corresponding output are provided.

gC[x_, n_,
  p_] := (Gamma[n])^(p - 1) /
   Product[Gamma[n - i], {i, 1, p - 1}] MeijerG[{{},
    Table[n - 1, {i, 1, p - 1}]}, {Table[n - i, {i, 2, p}], {}}, x]
 
r[x_] := Module[{d}, d = DiagonalMatrix[Diagonal[x]]; 
  MatrixPower[d, -1/2] . x . MatrixPower[d, -1/2]]
\[ScriptCapitalD] =
  MatrixPropertyDistribution[
   Det[r[(xr + I xi) .
      ConjugateTranspose[xr + I xi]]], {xr \[Distributed]
     MatrixNormalDistribution[IdentityMatrix[p], IdentityMatrix[n]],
    xi \[Distributed]
     MatrixNormalDistribution[IdentityMatrix[p],
      IdentityMatrix[n]]}] ;
 
data = Re[RandomVariate[\[ScriptCapitalD], 100000]] ;
\[ScriptCapitalD]1 = SmoothKernelDistribution[data] ;
 
Plot[{PDF[\[ScriptCapitalD]1, x], gC[x, n, p]}, {x, 0, 1},
 PlotLabels -> {"Numerical", "Analytical"},
 AxesLabel -> {"u", "p(u)"}]

The following figure shows that the numerical and analytical results match perfectly for the example case n=4, k=6.



[1] Pham-Gia, T. and Choulakian, V. (2014) Distribution of the Sample Correlation Matrix and      Applications. Open Journal of Statistics, 4, 330-344. doi: 10.4236/ojs.2014.45033.

[2] Weisstein, Eric W. "Meijer G-Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MeijerG-Function.html

Tuesday, 19 October 2021

Distribution of A Simple Function of Gamma Variables

In this post, we look at a nifty result presented in [Krishnamoorthy2019] where the probability density function (pdf) of the function \dfrac{r_1}{c+r_2} two independent Gamma distributed random variables r_1 \sim \mathcal{G}(k_1,\theta_1) and r_2 \sim \mathcal{G}(k_2, \theta_2) is derived.

The derivation is an exercise (for the scalar case) in computing the pdf of functions of variables by constructing the joint pdf and marginalizing based on the Jacobian. A similar approach can also be used for matrix-variate distributions (which will probably be a good topic for another post.)

Theorem


Let c > 0, and let r_1 \sim \mathcal{G}(k_1,\theta_1) and r_2 \sim \mathcal{G}(k_2, \theta_2) be independent random variables, then, the pdf of r = \dfrac{r_1}{c+r_2}, denoted by p_r(r;k_1,\theta_1,k_2,\theta_2,c), is given by

\begin{equation}K_\mathrm{r} r^{k_1-1} \exp\left(-\frac{rc}{\theta_1}\right) U\left(k_2,k_1+k_2+1;c\left(\frac{r}{\theta_1}+\frac{1}{\theta_2}\right)\right),\end{equation} 

where U(a,b;z) = \frac{1}{\Gamma(a)} \int_{0}^{+\infty} \exp(-zx) x^{a-1} (1+x)^{b-a-1} \mathrm{d}x is the hypergeometric U-function [Olver2010, Chapter 13, Kummer function], and K_\mathrm{r} is a constant ensuring that the integral over the pdf equals one.

Proof


As r_1 and r_2 are independent, their joint pdf, denoted by p_{r_1,r_2}(r_1,r_2;k_1,\theta_1,k_2,\theta_2), is given by

\begin{equation}\frac{1}{\Gamma(k_1) \theta_1^{k_1} \Gamma(k_2) \theta_2^{k_2}} r_1^{k_1-1} r_2^{k_2-1} \exp\left(-\frac{r_1}{\theta_1}-\frac{r_2}{\theta_2}\right).\end{equation}

Applying transformation r = \frac{r_1}{c+r_2} with Jacobian \frac{\mathrm{d} r_1}{\mathrm{d} r} = c+r_2, we obtain the transformed pdf, p_{r,r_2}(r,r_2;k_1,\theta_1,k_2,\theta_2,c), as

\begin{align}K_\mathrm{r}' r^{k_1-1} (c+r_2)^{k_1} r_2^{k_2-1}\exp\left(-\frac{rc}{\theta_1}-\left(\frac{r}{\theta_1} +\frac{1}{\theta_2}\right)r_2\right),\end{align}

where K_\mathrm{r}' is a constant ensuring that the integral over the pdf equals one. Next, 
p_r(r;k_1,\theta_1,k_2,\theta_2,c) is obtained by marginalization as

\begin{equation}p_r(r;k_1,\theta_1,k_2,\theta_2,c) = \int_{0}^{+\infty} \hspace{-0.25cm} p_{r,r_2}(r,r_2;k_1,\theta_1,k_2,\theta_2,c) \mathrm{d} r_2,\end{equation}

where the integration is conducted using the integral representation of the hypergeometric U-function from [Olver2010, Chapter 13, Kummer function] to obtain the expression in the theorem statement.

References


[Krishnamoorthy2019] A. Krishnamoorthy and R. Schober, “Precoder design for two-user uplink MIMO-NOMA with simultaneous triangularization,” in Proc. IEEE Global Commun. Conf., Dec. 2019, pp. 1–6. https://doi.org/10.1109/GLOBECOM38437.2019.9014161

[Olver2010] F. W. Olver, D. Lozier, R. Boisvert and C. Clark, "NIST digital library of mathematical functions", Release, vol. 1, pp. 14, 2010.