Processing math: 100%

Sunday, 12 December 2021

Distribution of the Determinant of a Complex-Valued Sample Correlation Matrix

In this post, we look at the distribution of the determinant of the sample correlation matrix of the realizations of a complex-valued Gaussian random vector. The distribution for real-valued Gaussian random vector was developed in [1], and we largely follow the developed framework. Thanks to Prashant Karunakaran for bringing this problem and the many applications to my attention in late 2017/early 2018.

Let \boldsymbol{x} be a Gaussian random vector of length p with mean \boldsymbol{\mu} \in \mathbb{C}^p and covariance \boldsymbol{\Sigma} \in \mathbb{C}^{p\times p}. Let \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(n)} denote n realizations, n \geq p, of \boldsymbol{x}. In the terminology of [1], the adjusted sample covariance matrix is given by \boldsymbol{S} = \frac{1}{n}\sum_{i = 1}^{n}(\boldsymbol{x}^{(i)} - \bar{\boldsymbol{x}})(\boldsymbol{x}^{(i)} - \bar{\boldsymbol{x}})^\mathrm{H}, where \bar{\boldsymbol{x}} is the sample mean given by \bar{\boldsymbol{x}} = \frac{1}{n}\sum_{i = 1}^{n}\boldsymbol{x}^{(i)}. Note that the adjusted sample covariance matrix is positive semi-definite.

The correlation matrix \boldsymbol{R} is defined as: \boldsymbol{R} = \boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{S} \boldsymbol{D}^{-\frac{1}{2}}, where \boldsymbol{D} = \mathrm{Diag}(\boldsymbol{S}) is a diagonal matrix with the diagonal elements of \boldsymbol{S} on the main diagonal. Hence, \boldsymbol{R} has unit diagonal elements and is independent of the variance of the elements of \boldsymbol{x}. 

Now, for real-valued \boldsymbol{x}, the determinant of \boldsymbol{R}, denoted by |\boldsymbol{R}|, is shown in [1, Theorem 2] to be a product of p-1 Beta-distributed scalar variables \mathrm{Beta}(\frac{n-i}{2},\frac{i-1}{2}),  i=1,\dots,p-1. The density of the product can be given in terms of the \mathrm{MeijerG} function [2] as follows [1, Theorem 2]:

g_\mathbb{R}(x;n,p) = \frac{\left[\Gamma(\frac{n-1}{2})\right]^{(p-1)} }{\Gamma(\frac{n-2}{2})\dots\Gamma(\frac{n-p}{2})} \mathrm{MeijerG}^{\begin{bmatrix}p-1 & 0 \\ p-1 & p-1\end{bmatrix}}\left(x\middle|\begin{matrix}\frac{n-3}{2},\dots,\frac{n-3}{2}\\ \frac{n-4}{2},\dots,\frac{n-(p+2)}{2}\end{matrix}\right).

Analogously, for complex-valued \boldsymbol{x}, |\boldsymbol{R}| is a product of p-1 Beta-distributed scalar variables \mathrm{Beta}(n-i,i),  i=1,\dots,p-1. The density of the product can now be given in terms of the \mathrm{MeijerG} function, in a straightfoward manner, as follows.

g_\mathbb{C}(x;n,p) = \frac{\left[\Gamma(n-1)\right]^{(p-1)} }{\Gamma(n-1)\dots\Gamma(n-p+1)} \mathrm{MeijerG}^{\begin{bmatrix}p-1 & 0 \\ p-1 & p-1\end{bmatrix}}\left(x\middle|\begin{matrix}n-1,\dots,n-1\\ n-2,\dots,n-p\end{matrix}\right).

In the following, a Mathematica program for numerical simulation and the corresponding output are provided.

gC[x_, n_,
  p_] := (Gamma[n])^(p - 1) /
   Product[Gamma[n - i], {i, 1, p - 1}] MeijerG[{{},
    Table[n - 1, {i, 1, p - 1}]}, {Table[n - i, {i, 2, p}], {}}, x]
 
r[x_] := Module[{d}, d = DiagonalMatrix[Diagonal[x]]; 
  MatrixPower[d, -1/2] . x . MatrixPower[d, -1/2]]
\[ScriptCapitalD] =
  MatrixPropertyDistribution[
   Det[r[(xr + I xi) .
      ConjugateTranspose[xr + I xi]]], {xr \[Distributed]
     MatrixNormalDistribution[IdentityMatrix[p], IdentityMatrix[n]],
    xi \[Distributed]
     MatrixNormalDistribution[IdentityMatrix[p],
      IdentityMatrix[n]]}] ;
 
data = Re[RandomVariate[\[ScriptCapitalD], 100000]] ;
\[ScriptCapitalD]1 = SmoothKernelDistribution[data] ;
 
Plot[{PDF[\[ScriptCapitalD]1, x], gC[x, n, p]}, {x, 0, 1},
 PlotLabels -> {"Numerical", "Analytical"},
 AxesLabel -> {"u", "p(u)"}]

The following figure shows that the numerical and analytical results match perfectly for the example case n=4, k=6.



[1] Pham-Gia, T. and Choulakian, V. (2014) Distribution of the Sample Correlation Matrix and      Applications. Open Journal of Statistics, 4, 330-344. doi: 10.4236/ojs.2014.45033.

[2] Weisstein, Eric W. "Meijer G-Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MeijerG-Function.html

No comments:

Post a Comment